Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 40(14): 6405-6414, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33554754

RESUMO

Protein Z (PZ) dependent protease inhibitor (ZPI) is a natural anticoagulant inhibiting blood coagulation proteases fXa and fXIa. Despite being a member of the serpin superfamily, it possesses unique structural features such as activation by PZ, regulating its inhibitory function. In order to understand the Reactive Centre Loop (RCL) dynamics of ZPI, which is absolutely critical for its activity, we performed Molecular Dynamics (MD) simulation on ZPI and its E371 and S359 variants located at important conserved functional sites. Unexpectedly, the RCL of E371 variants, (E371K, E371R, and E371Q), were shown to be very stable due to compensatory interactions at the proximal end of RCL. Interestingly, RCL flexibility was shown to be enhanced in the double mutant K318E-E371K due to the repulsive effect of increased negative charge on top of the breach region. Principal component analysis (PCA) coupled with residue wise interaction network analysis(RIN) revealed correlated motion between the RCL and the PZ binding regions in the WT. However, a loss of regulation in correlated motion between RCL and PZ binding hotspot Tyr240 in the double mutant was also observed. Additionally, the S359F and S359I mutations resulted in increased RCL flexibility owing to the disruption of stabilizing hydrogen bonding interaction at the distal end of strand S5A. Thus, the current study proposes that the overall stabilizing interactions of S5A is a major regulator of proper loop movement of ZPI for its activity. The results would be beneficial to engineer activity compromised ZPI as a prophylactic agent for the treatment of hemophilia.Communicated by Ramaswamy H. Sarma.


Assuntos
Fator Xa , Serpinas , Proteínas Sanguíneas/química , Fator Xa/química , Cinética , Simulação de Dinâmica Molecular , Inibidores de Proteases , Ligação Proteica , Serpinas/química , Serpinas/genética , Serpinas/metabolismo
2.
J Struct Biol ; 208(2): 137-151, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31445086

RESUMO

Formation of the internal aldimine (LLP) is the first regulatory step that activates pyridoxal 5'-phosphate (PLP) dependent enzymes. The process involves a nucleophilic attack on PLP by an active site Lys residue, followed by proton transfers resulting in a carbinolamine (CBA) intermediate that undergoes dehydration to form the aldimine. Despite a general understanding of the pathway, the structural basis of the mechanistic roles of specific residues in each of these steps is unclear. Here we determined the crystal structure of the LLP form (holo-form) of a Group II PLP-dependent decarboxylase from Methanocaldococcus jannaschii (MjDC) at 1.7 Šresolution. By comparing the crystal structure of MjDC in the LLP form with that of the pyridoxal-P (non-covalently bound aldehyde) form, we demonstrate structural evidence for a water-mediated mechanism of LLP formation. A conserved extended hydrogen-bonding network around PLP coupled to the pyridinyl nitrogen influences activation and catalysis by affecting the electronic configuration of PLP. Furthermore, the two cofactor bound forms revealed open and closed conformations of the catalytic loop (CL) in the absence of a ligand, supporting a hypothesis for a regulatory link between LLP formation and CL dynamics. The evidence suggests that activation of Group II decarboxylases involves a complex interplay of interactions between the electronic states of PLP, the active site micro-environment and CL dynamics.


Assuntos
Archaea/enzimologia , Carboxiliases/química , Carboxiliases/metabolismo , Catálise , Ligação de Hidrogênio , Methanocaldococcus/enzimologia , Fosfato de Piridoxal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...